Thermal characteristics of the self-healing response in poly(ethylene-co-methacrylic acid) copolymers.

نویسندگان

  • Stephen J Kalista
  • Thomas C Ward
چکیده

A class of poly(ethylene-co-methacrylic acid) (EMAA) copolymers and ionomers has shown the unique ability to instantaneously self-heal following ballistic puncture. It is noteworthy that the thermomechanical healing process active in these materials appears to be significantly different in capability and mechanism than any of the other self-repairing systems studied. To better understand this phenomenon, the thermal response during EMAA self-healing was examined. Tests of various damage types, including sawing, cutting and puncture, revealed high-energy transfer damage modes to produce heat and store energy favourable to healing. DSC probed healed specimens revealing they had reached the viscoelastic melt believed requisite to healing response. Low-temperature ballistic experiments demonstrated films continue healing even when punctured at -30 degrees C; analysis showed healing efficacy comparable to room temperature, holding significant pressures of approximately 3 MPa. At the lowest temperature, brittle fracture occurred in one material indicating insufficient heat transfer to store recoverable energy. In total, the results supported the defined healing model and provided additional information on the healing process in both its thermal dependence and general mechanism. Finally, a new DSC method was developed for probing the thermal history of healed films which may lead to a more complete mechanistic model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrospinning of Poly (mma-co-maa) Copolymers and Their Layered Silicate Nanocomposites for Improved Thermal Properties

Copolymers consisting of methyl methacrylate (MMA) and methacrylic acid (MAA) and their layered silicate nanocomposites were electrospun to form fibers with diameters in the sub-micron range. The presence of MAA increased the glass transition temperature and thermal stability of the copolymers through formation of anhydrides upon heating. Dispersion of layered silicates within the nanocomposite...

متن کامل

Synthesis and Thermal Properties of Novel Biodegradable ABCBA Pentablock Copolymers from Poly (Ethylene glycol), L-Lactide and p-Dioxanone

In this work, new biodegradable ABCBA type pentablock copolymers with different mole ratio of L-lactide and PPDO-b-PEG-b-PPDO triblock copolymer were synthesized and characterized. In the first step, PPDO-b-PEG-b-PPDO triblock copolymer was synthesized via a ring-opening polymerization of P-DiOxanone (PDO) monomer with Poly (Ethylene Glycol) (P...

متن کامل

Controlled release by using poly (methacrylic acid-g-ethylene glycol ) hydrogels

Graft copolymers of poly (ethylene glycol) with poly (methacrylic acid) were prepared by reaction of poly (ethylene glycol) methacrylate macromonomer with methacrylic acid in the presence of tetraethylene glycol dimethacrylate as a crosslinking agent. The materials were swollen in aqueous solutions with the pH ranging from 1.5 to 12.0. Dynamic swelling studies were performed. The swelling rates...

متن کامل

Complexation graft copolymer networks: swelling properties, calcium binding and proteolytic enzyme inhibition.

Graft copolymer networks of poly(methacrylic acid-g-ethylene glycol) were prepared by free radical solution UV-polymerization of methacrylic acid (MAA) and poly(ethylene glycol) monomethacrylate. Dynamic swelling studies indicated that complexation/decomplexation processes occurred due to hydrogen bonding between the carboxylic groups of the poly(methacrylic acid) (PMAA) and the ether groups of...

متن کامل

غشا کامپوزیتی برای غشای عبور پروتون پیل های سوختی بر اساس کوپلیمر متیل متا کریلات-مالایمید/ فسفوتنگستیک اسید

Poly(methyl methacrylate-co-nitrophenyl maleimide) (MMA-co-NMI) and poly(methyl‌‌‌‌ methacrylate-co-hydroxyphenyl maleimide)‌‌‌‌‌ (MMA-co-HMI) copolymers were synthesized using free radical polymerization of MMA with a new MI monomer containing phenyl and –NO2 groups. Proton exchange membrane fuel cell(PEMFC) were prepared using these copolymers as membrane matrix and phosphotungstic acid (PWA)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the Royal Society, Interface

دوره 4 13  شماره 

صفحات  -

تاریخ انتشار 2007